RELAXATION OF THE SYMMETRIC VIBRATION
MODE OF THE CO, MOLECULE

A, A, Likal'ter UDC 539.196.5

The applicability of the Landau— Teller energy-relaxation equation of a harmonic oscillator

is verified for the CO, molecule in which there is Fermi resonance. It is shown that the dis-
tribution over the split levels of the symmetric mode formed by vibrational exchange pro-
cesses and transitions within multiplets is analogous to the Treanore distribution for a single-
mode anharmonic oscillator.

1. INTRODUCTION

The description of the kinetics of vibrational—translational exchange (VT) for symmetric longitudinal
and bending vibrations of the CO, molecule is of considerable interest for CO, lasers (since the lower 10%
and 02% lasing levels belong to these modes) and for other problems in which the vibrational relaxation of
CO, is substantial,

The Landau— Teller form of the energy-relaxation equation of a harmonic oscillator [1] is ordinarily
used., To derive this equation, it is essential that the harmonic-oscillator spectrum be equidistant, and
hence, the exponential factors in the transition probabilities, which originate becaunse of the adiabaticity
of the vibrational—translational exchange, are identical for all transitions between adjacent levels, The
dependence of the one~quantum transition probabilities on the vibrational number is given by the square
of the matrix element of the oscillator coordinate. However, a relatively small deviation of the spectrum
from an equidistant one already results in the fact that the adiabatic factors for differeat one-quantum
transitions differ radieally. This circumstance is well known and should be taken into account for diatomic
molecules if the vibrational temperature is sufficiently high so that the levels would be populated with no-
ticeable anharmonicity {2]. However, the anharmonicity is substantial at the very lowest-lying vibrational
levels (Fermi resonance) for CO, molecules, and should perhaps be taken into account if only the levels
10%, 02, 02%0 are populated sufficiently. In a number of cases, the Landau—Teller form of the energy-
relaxation equation can remain satisfactory.

Herzfeld [3] and Seeber (4] evaluated the probability of a number of vibrational transitions for CO,
collisions with CO, on the basis of the-Schwartz—S8lavsky—Herzfeld theory with Fermi resonance taken into
account, However, the influence of the Fermi resonance on the form of the quasistationary vibrational dis-
tribution and on the energy-relaxation equation for symmetric vibrations has not been discussed in the lit-
erature, The examination of these questions is the purpose of the present paper,

2. VIBRATIONAL STATES OF THE SYMMETRIC CO, MODE

Symmetric vibrations of the CO, molecule consist of longitudinal (mode 1) and bending (mode 2) vi-
brations. A two-dimensional oscillator corresponds to the latter in the vibrational spectrum of CO,. The
wave functions [5]
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correspond to its states with a definite moment of momentum, where ¢ is the angle of rotation relative to
the molecule axis, p = v(m,w, /i )r is the dimensionless radius (ris the transverse dimerrls(i)on of the bent

molecule), my = 2myme/MCO, is the reduced oscillator mass, w, is a frequency, and Ll

» ’(p? are Laguerre

polynomials of the square of the dimensionless radius. The parameter v is related to the vibrational num-

ber v, by the relationship 2» = v, - I. The vibrational moment [ takes on the values— Vo, " Vg + 2

,--qu.

The nonzero perturbation matrix elemeats of the form ¢ equal
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The specifics of the CO, vibrational spectrum are that a quantum of the symmetrical longitudinal
vibrations is a multiple of the quantum of the bending vibrations (fiw; = 2Rw,y). Consequently, the symmet-
rical vibrations actually form one mode, The symmetric mode levels are characterized by the vibrational
number v = 2v, + v, and degenerate, in a harmonic approximation, with the multiplicity
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The anharmonic term in the vibrational Hamiltonian
of the molecule Vg = Az,p’, where z, is the dimensionless
normal coordinate of the longitudinal symmetric vibrations,
results in splitting of the symmetric mode levels (Fermi
resonance) [5]. According to perturbation theory for a
degenerate level, linear combinations of those initial wave
functions for which the nondiagonal matrix elements of the
anharmonic perturbation differ from zero correspond to its

~ ~ split components, Since a perturbation with the symmetry
of the molecule is independent of the angle ¢, then wave
functions of states with identical vibrational momentum are
combined, The nonzerc matrix elements equal
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where W, ~ 51 cm™! is the Fermi resonance constant, The
level shifts and the coefficients are derived from periur-
bation theory in linear combinations of the initial wave func-
tions, which are expressed in terms of the matrix elements
(2.2).
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The vibrational states corresponding to the compo-
nents of the first four multiplets are presented in Table 1.
The angular brackets denote the initial states and the paren-
theses, the correct states. Table 1 has been composed by
neglecting second-order terms in perturbation theory and
| ol B8 a¥end the anharmonic terms different from Fermi resonance,
This affords sufficient accuracy for our purpose in the
spectrum range under consideration. It is seen from Table
1 that transitions are possible between all components of
adjacent multiplets with vibrational momentum differing by
one, which are subject to a perturbation originating during
a collision and proportional to the coordinate of the plane-
polarized bending vibration (p cos ¢), This also refers to
the 10%, 20% 1levels which are traditionally longitudinal
symmetric vibrations. Transitions subjected to a pertur-
bation proportional to p®cos? ¢ are possible between com-
ponents of the very same multiplet. According to [4], the
velocities of transitions between Fermi-resonant levels
are hence of the same order as between the levels not
related to Fermi resonance,
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3. QUASISTATIONARY VIBRATIONAL
DISTRIBUTION
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Let us clarify the form of the level distribution in the
case when the frequencies of the V~T transitions between
adjacent multiplets are small compared to the frequencies
of the vibrational exchange and the {ransitions between com-~
ponents of the very same multiplet, This distribution is
the solution of the kinetic problem including V—V transition
between components of adjacent multiplets and transitions
between components of one multiplet and hence containing a
large number of different velocity constants, Let us show
that a universal distribution independent of the velocity
constants (a Treanore-type distribution) exists,

TABLE 2
|
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The desired distribution should cancel the total V-V current (i.e., the difference between the number
of direct and reverse transitions per unit volume per unit time) between adjacent multiplets, Hence, let
us seek the distribution cancelling all elementary V—V currents, Let us introduce a two-subscript notation
for the populations of the separate components n 5, where the first subscript is the vibrational number of
the multiplet to which the level belongs, and the second is a formal subscript making the level within the
multiplet specific, The condition of zero elementary V—V current is

e | AE Splup 3.1)
. 1 o —e oper | = .
Q((‘:Algﬁ("‘:’,i%(f) LAY (nul-‘,nt'g'—nrH.?.nu'-—!. A PRV } 0,
where QUd ™" is the velocity constant of the process for which one of the colliding molecules

makes the transition from the state vginto v + 1, A, while the other goes from the state v' g into v' — 1,
A'; AE is the defect in transition vibrational energy. Since (3.1) is an equation of the detailed balance for
the elementary process, it is satisfied for the Boltzmann distribution ny 4 ~ gvpe VAL Because of the
presence of the integral of V~V collision, the sum of vibrational numbers of the multiplets, a more general
solution of (3.1) of the form

E.

= (3.2)

og ~ Bovp€ ’

exists, which corresponds to the energy of a mode different from the equilibrium value at the gas tempera-
ture. Let us now note that the distribution (3.2) cancels not only all V—V currents (including the two-
quanta currents) but also 2ll currents within the multiplets [since v has been fixed within one multiplet

and (3.2) reduces to a Boltzmann distribution with the gas temperature], Hence, the distribution (3.2) is
quasistationary, i.e., is stationary to the accuracy of taking into account the V- T exchange resulting in

a slow change in the parameter vy, This distribution is completely analogous to the Treanore distribution
for a single-mods anharmonic oscillator [6]. :

Applying the Boltzmann H-theorem, it can be shown that the currents in the system damp out with
time for the set of processes under consideration (V—V processes and transitions between multiplet com~
ponents), and an arbitrary initial distribution goes over into a Treanore-type distribution (3.2) (see the
Appendix).

The parameter v governs the effective vibrational temperature Ty, i.e., the temperature originating
during the transition to the egnidistant spectrum:

1 v
T ha
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v

It is interesting to note that for a sufficiently high vibrational temperature and a low gas temperature
the distribution over the symmetric mode levels is a sawtooth, i.e., the origination of population inversions
between adjacent multiplet components is possible, In particular, the populations of levels (referred to the
statistic weights) v and v + 1, A belonging to adjacent multiplets are compared for

~

v i
T E

[— refh T En’ﬂ

R
{(this occurs for Ty /T =~5 for the 10% and 030 levels, for example}.

If the gas temperature is high compared to the splitting into multiplets and the deviations of their
ceuters from equidistant separation, then the Treanore-type distribution is transformed into a Boltzmann
distribution with a vibrational temperature governed by the parameter v, The multiplet population is hence
distributed over its components in proportion to its statistical weights,

Let us emphasize that sums of the numbers v, and v, are not conserved separately for the V—V col~
lisions, but a distribution of the form
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with vy, # v, will already notbe quasistationary. Hence, it is meaningless to introduce different vibrational
temperatures of the longitudinal symmetric and bending modes: if these temperatures exist, they are iden-
tical.

A quasistationary vibrational distribution for both CO, modes which exist if the transition frequencies
between the symmetric and antisymmetric modes and the V— T transition frequencies are small compared
to the V—V transition frequencies in the modes, has the form

Evn}év,

Ye(2v o) +Vyvs— T
o1 =ny’g e .

19Ty

(3.3)

where gy =1ifl =0 and g =2 ifl #0; v5 and v, are related to the vibrational temperatures of the sym-
metric and antisymmetric modes.

The vibrational levels form a square lattice on the vvs plane, The distribution (3.3) exists only in
some neighborhood of the ground level in which V—V processes predominate, As the vibrational numbers
grow, the role of the intermodal transitions (VV') portrayed by diagonals in the lattice will increase, Ap-
parently the transitions vvy; — v +4, v;—1 hence play the main role in the domain adjacent to the v; axis,
and the transitions vv; — v + 3,v3—1, in the domain adjacent to the v axis (this is related to the onset of
resonance at the appropriate transitions which originate because an antisymmetric mode quantum dimin~
ishes as the vibrational number of the symmetric mode increases), The sum 4v; + v is conserved for
V-=V' collisions of the first kind and the sum 3v; + v, for the second kind. Hence, the quasistationary dis-
tribution in the domain where V—V' processes predominate over all others is

i

vr(261-kr,+rv,)—&¥L3}3

r.véw ~e '
where r = 4 near the v; axis and r =3 near the v axis. Finally, the distribution is evidently Boltzmannian
with the gas temperature in the domain where V—T processes predominate.

4. ENERGY-RELAXATION EQUATION

Since there is no success in obtaining a compact equation for the energy relaxation with splitting
in the symmetric mode and with the adiabatic factors originating because of this difference taken into
account, let us clarify the possibility of applying the ordinary relaxation equation by using a numerical
confirmation, For this purpose, let us establish the dependence of the transition probabilities between
adjacent multiplets on the vibrational number of the multiplet within the framework of Landau— Teller
theory., The transition probability between multiplets is obtained by summation over the final states and
averaging over the initial states of the transition probabilities between individual components, each of
which is proportional to the square of the absolute value of the perturbation matrix element and the adiabatic
factor dependent on the transition energy. Given in Table 2 are the squares of the absolute values of the
perturbation matrix elements proportional to p cos ¢, evaluated for the states represented in Table 1 by
using (2.1), and the relative values of the adiabatic factors '

2uw?

' /3
fmu ~ exp [’— 3 ( 2a2,1n,m) (.

(where y is the reduced mass of the colliding molecules, wpp is the transition frequency, and 1/ & is the
characteristic length of the change in potential). Considered are the cases of practical interest of quenching
by helium and CO, molecules at a comparatively low temperature T = 300°K, when the effect of anharmonic-
ity should be large. Only the main exponential Landau—Teller factor was taken into account in evaluating
the adiabatic factor, which is sufficient for a qualitative description, The characteristic length of the po-
tential change was taken egual to 0.2 *10-% cm [3]. For simplification, it is assumed that the populations

of the multiplet components are referred to as their statistical weights,

It is seen from Table 2 that the relative change in the adiabatic factors reaches 3 in the case of
quenching by helium and 10 in the case of quenching by CO, molecules, At the same time, the sums of the
squares of matrix elements with weight f,/f); agree with the sums of squares for quenching by helium
to ~15% accuracy and for quenching by CO, molecules to ~ 30% accuracy. This is explained partially by
the fact that the multiplet centers are almost equidistant and the greatest matrix elements correspond to
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transitions between them, and partially by canceliations originating during the summatjon, The cancella-
tion is improved as the number v increases because of the increase in the number of components in the
multiplets, If the deviation of the sum of the weighted squares of the matrix elements from the sum of the
squares is neglected, then it is possible to arrive at an energy-relaxation equation in the Landau—Teller
form, This is done most simply by noting that the sum of the squares of the absolute values of the transi-
tion matrix elements between two sets of states does not change when the initial states in each set are
replaced by their linear combinations. Let us use a representation originating during selection of bending
vibrations as basis states with plane polarization for the sum of the squares. Equating the time derivative
of the symmetric mode energy, equal to the sum of the energies of modes 1 and 2, to the energy transmitted
to the translational degrees of freedom per unit time during the transitions between adjacent multiplets,
we obtain ,

G Ey + Ey) = — hoy S {n, PIH — pyy PY

?17 2 i vl
T

]
where P“:ﬂ is the frequency of transitions between the multiplet v and v + 1, and n, is the multiplet popula-
tion '(’ny ae N nwz.}.

Ty B

Using the representation

E n 2 AN
vt = Py p U 1
g <red (Warm )’

fz,’fzx.vzy

e
where g4 is the statistical weight of the multiplet and v,y and Vay T the vibrational numbers of the
bending vibrations polarized in the xz and yz planes, the equation ordinarily used,

d 'v ‘e /
By~ Ey) = — Pi(i— a)(E, — E, (T)),

can be obtained, where o = e—ﬁw‘Z/T.

The author is grateful to L. M. Biberman, S, Ya, Bronin, M. B. Zheleznyak and A, Kh, Mnatsakanyan
for discussing the paper,

APPENDIX, PROOF OF THE UNIQUENESS AND CONVERGENCE TO A
TREANORE-TYPE DISTRIBUTION

Let us introduce the potential relative to a Boltzmann distribution with the gas temperature

.o
i
Py = ao

(&Y

where
Gug = gvﬁnooeﬁErﬁ/T'
According to the definition, the ground-state potential is ¢, =1 . In the new notation, the expression for

the V-V current vg +v'g—~ v + kA + v — kA" (k=0, 1, 2) is

(c+h ) (e —Ri)

OBy, (v'B’) \CupPuerp — (PU+R;7»[P'C'—I'1|7-')7 (A 1)
where the conductivity equals
(UBoR) (3 h R Ry
U(L-B),(f-’ﬁ(';' ) = OE::[S)’(IL”B(']) i )G,.-,';G.'ps'.

The current between the multiplet components is

(72,
Ot (G e — Poan)s (A2)
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where the conductivity is

: )
ot = PhiGos

(vA)
P

is the frequency of the transitions vg— vA),

The eonductivities are invariant relative to replacement of the initial by the final states and relative
to commutation of the collision partners in the initial and final states. Let us note that the current (A.2)
can be written in the form (A.1) for k = 0 and by a change in the indices from primes to zeros (since ¢, =1).

For simplicity, let us henceforth denote the level by a single subscript., The balance equations for
the population levels are written as
dn Y
Tl?k = — Z Uml(fph(Pl—Q?m(Pn)v (A.3)

I,m,n

where k, [, m, n take on all values from the very same set, The system (A.3) is analogous to a Boltzmann
kinetic equation, for which the H-theorem can hence be proved [7].

Let us infroduce the functional

H:Znhlncpk
[

and let us evaluate the time derivative,

JdH dny,
& ZE(H- In gx) —*. (A4)

It follows from this last equation that a necessary condition for stationarity of the population dny/dt = 0 is
that the derivative dH/dt vanish, Substituting (A.3) into (A .4) and symmetrizing with respect to the sub-
seripts, we obtain

H 1 0P,

%t— Y E ln @:prln R (PRPL — Pmpn)- (A.5)

kyl,mgn

Since the terms in the sum (A.5) are nonnegative, then

L0, (A.6)
Equality is possible in (A.6) only in the case
Pr Tt — G Qp = 0 (A-7)

for P00 =0, The system (A.7) agrees with the condition that all the elementary currents vanish. There-
fore, cancellation of all the elementary currents for the system under consideration is a necessary and
sufficient condition for stationarity of the populations. Since H is bounded, then it follows from (A.6) that
the currents damp out with time and an arbitrary initial distribution tends to a stationary distribution,

Returning to the two-subscript notation for the levels in (A,7) and recalling that the sum of the vibra-
tional numbers of the multiplets is retained in all the processes under consideration, we find

Oy = €%

(we also took account of the normalization ¢, =1). We obtain for the populations

E

A S 7
nop = GopQop = MpoBup® :

which agrees with (3.2). This distribution can be considered as partial equilibrium, possible if the veloci-
ties of the V—T processes are low (in the same sense as the state of a gas with a nonequilibrium chemical
composition if the chemical reaction rates are low). In conclusion, let us emphasize that the proof presented
refers to some neighborhood of the ground level in which the influence of the V—T processes (both direct
and indirect, associated with taking account of the boundary conditions for large vibrational numbers) is
negligible,
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